Add like
Add dislike
Add to saved papers

Nicotinamide phosphoribosyltransferase inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro.

The adipokine nicotinamide phosphoribosyltransferase (Nampt), also known as pre-B-cell colony-enhancing factor or the insulin-mimetic hormone visfatin, has a crucial role in the conversion of nicotinamide to nicotinamide mononucleotide during biosynthesis of the coenzyme nicotinamide adenine dinucleotide. Previous reports have demonstrated the inhibitory effects of Nampt on osteoclast formation from human peripheral blood mononuclear cells and CD14+ monocytes. However, the effects of Nampt on bone marrow macrophage (BMM)‑derived osteoclastogenesis and its precise role in the process remain unclear. The present in vitro study used recombinant Nampt and BMMs as osteoclast precursors demonstrated that Nampt suppresses receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclastogenesis by decreasing the phosphorylation of various early signal transducers, including c‑Jun N‑terminal kinase, Akt, glycogen synthase kinase‑3 β, Bruton's tyrosine kinase and phospholipase C γ‑2. In addition, western blotting and reverse transcription‑quantitative polymerase chain reaction analysis indicated that Nampt downregulates the mRNA and protein expression levels of c‑Fos and nuclear factor of activated T cells, cytoplasmic 1, leading to a decrease in the expression of osteoclast‑specific genes including tartrate‑resistant acid phosphatase, osteoclast‑associated receptor and cathepsin K. However, the bone‑resorbing activity of mature osteoclasts treated with Nampt was similar to untreated control osteoclasts. This finding indicates that Nampt exerts its anti‑osteoclastogenic activity by targeting osteoclast precursor cells rather than mature osteoclasts. Consequently, the present study demonstrated that Nampt acts as a negative regulator of RANKL‑mediated differentiation of BMMs into osteoclasts, suggesting the potential therapeutic targets to treat bone-related disorders such as osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app