Add like
Add dislike
Add to saved papers

Short hairpin RNA directed against β-catenin inhibits prostate cancer growth and invasion in vitro.

β-catenin protein exhibits a dual function in epithelial cells, depending on its intracellular localization. At the plasma membrane, β‑catenin is an important constituent of adherens junctions. However, when the Wnt/β‑catenin signaling pathway is activated, β‑catenin translocates to the nucleus to promote specific gene expression. To investigate the functional activity and examine the role of the Wnt/β‑catenin signaling pathway in various human prostate cancer cells, indirect immunofluorescence was performed to detect the expression and distribution of β‑catenin in the following prostate cancer cell lines: PC‑3, LNCaP, C4‑2, IA8‑ARCaP and IF11‑ARCaP. A marked difference was observed in the expression and distribution of β‑catenin in different prostate cancer cell lines. β‑catenin was observed in the nuclei of IA8-ARCaP and IF11‑ARCaP cell lines, whereas it was present on the membrane of LNCaP and C4‑2 cell lines. There was a low expression of β‑catenin in the PC‑3 cell line. Furthermore, short hairpin RNA (shRNA) targeting human β‑catenin was constructed to investigate the effect of β‑catenin shRNA on the proliferation and invasive potency of prostate cancer cells. The IA8/β‑catenin(‑) cell line exhibited a reduced potency for invasion and proliferation compared with the IA8 and IA8‑shControl groups. The present study demonstrated that suppressing activity of Wnt/β‑catenin signal pathway via β‑catenin shRNA results in an inhibition of prostate cancer proliferation and invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app