JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spinal TRPC6 channels contributes to morphine-induced antinociceptive tolerance and hyperalgesia in rats.

Neuroscience Letters 2017 Februrary 4
The chronic administration of opioids results in the development of morphine analgesic tolerance and withdrawl-induced hyperalgesia, which limits their clinical utility in pain treatment. However, the cellular mechanisms underlying opioid-induced tolerance and hyperalgesia are not fully understood. The transient receptor potential canonical channel TRPC6 is important for brain development and function, as it regulates cytosolic, endoplasmic reticulum, and mitochondrial Ca2+ levels in neural cells. Here, we report that TRPC6 expression in the spinal cord was up-regulated after chronic morphine treatment. Furthermore, inhibition of TRPC6 in the spinal cord blocked the induction of morphine tolerance and hyperalgesia without affecting basal pain perception. These effects were attributed to the attenuation of morphine-induced neuroimmune activation and increased levels of CaMKIIα and nNOS in the spinal cord. This data suggests that specific TRPC6 inhibitors could be utilized for the prevention of morphine-induced antinociceptive tolerance and hyperalgesia in chronic pain management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app