Add like
Add dislike
Add to saved papers

Fence Constructed at a Semiconductor/Electrolyte Interface Improving the Electron Collection Efficiency of the Photoelectrode for a Dye-Sensitized Solar Cell.

Charge recombination and transfer at the TiO2 /dye/electrolyte interface play a crucial role in dye-sensitized solar cells (DSSCs). Here, a fine-controlled gold nanoparticle (Au NP) via electrodeposition incorporated into a porous TiO2 photoanode and dodecanethiol molecules as an assembled monolayer capping on Au NPs was designed and prepared. The "fence-like" structure of gold thiol molecules at the TiO2 /dye/electrolyte interface can not only insulate the electrolyte to suppress recombination but also make full use of the plasmon-enhanced light absorption of Au NPs. The photoanodes were characterized by X-ray photoelectron spectroscopy, UV-vis absorption, and Mott-Schottky analyses. Compared to pure TiO2 , the DSSC with an interface "fence" structure achieved an efficiency (η) of 8.17%, increasing by 10.4%. The enhancement results are essentially attributed to the increase of the light-harvesting and electron collection properties, accompanying a slight promotion in the Fermi level. Furthermore, after dodecanethiol molecule treatment, the Au NPs with an intensified near-field effect also acted as electron sinks to store more electrons and exhibited a well electron-transport performance from electrochemical impedance spectroscopy analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app