Add like
Add dislike
Add to saved papers

Integrating biopharmaceutics risk assessment and in vivo absorption model in formulation development of BCS class I drug using the QbD approach.

OBJECTIVE: Clinically relevant critical quality attributes (CQA's) were identified for the development of generic drug products containing fluconazole and potential design spaces relevant to the clinical application of the drug candidate was explored.

SIGNIFICANCE: A simplified scoring system for the biopharmaceutics risk assessment roadmap (BioRAM) is proposed to guide product development.

METHODS: Factorial design of experiments was employed to study the effect of formulation and process variables on CQA's. The in vivo model was developed for predicting the fraction of drug absorbed and to identify the effect of formulation components on drug absorption.

RESULTS: BioRAM yielded low scores for fluconazole absorption with respect to severity (risks of sub and supra-bioavailable drug products), probability of incidence of bioinequivalent results and capacity of detection. The results demonstrated that dissolution was highly influenced by the active pharmaceutical ingredient (API) polymorphism and the ratio of diluents. Process variables (mixing time, lubricant concentration, lubrication time and filling speed) did not impact the clinical outcome of the formulation with respect to dissolution and content uniformity.

CONCLUSIONS: Understanding the clinical implications of the adopted formulation approach led to the construction of purposeful design space and control strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app