JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

A Novel Motif for S-Adenosyl-l-methionine Binding by the Ribosomal RNA Methyltransferase TlyA from Mycobacterium tuberculosis.

Capreomycin is a potent ribosome-targeting antibiotic that is an essential component of current antituberculosis treatments, particularly in the case of multidrug-resistant Mycobacterium tuberculosis (Mtb). Optimal capreomycin binding and Mtb ribosome inhibition requires ribosomal RNA methylation in both ribosome subunits by TlyA (Rv1694), an enzyme with dual 2'-O-methytransferase and putative hemolytic activities. Despite the important role of TlyA in capreomycin sensitivity and identification of inactivating mutations in the corresponding Mtb gene tlyA, which cause resistance to capreomycin, our current structural and mechanistic understanding of TlyA action remains limited. Here, we present structural and functional analyses of Mtb TlyA interaction with its obligatory co-substrate for methyltransferase activity, S-adenosyl-l-methionine (SAM). Despite adopting a complete class I methyltransferase fold containing conserved SAM-binding and catalytic motifs, the isolated TlyA carboxyl-terminal domain exhibits no detectable affinity for SAM. Further analyses identify a tetrapeptide motif (RXWV) in the TlyA interdomain linker as indispensable for co-substrate binding. Our results also suggest that structural plasticity of the RXWV motif could contribute to TlyA domain interactions, as well as specific recognition of its two structurally distinct ribosomal RNA targets. Our findings thus reveal a novel motif requirement for SAM binding by TlyA and set the stage for future mechanistic studies of TlyA substrate recognition and modification that underpin Mtb sensitivity to capreomycin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app