Add like
Add dislike
Add to saved papers

Segmental specificity in belly dance mimics primal trunk locomotor patterns.

Belly dance was used to investigate control of rhythmic undulating trunk movements in humans. Activation patterns in lumbar erector spinae muscles were recorded using surface electromyography at four segmental levels spanning T10 to L4. Muscle activation patterns for movement tempos of 2 Hz, 3 Hz, and as fast as possible (up to 6 Hz) were compared to test the hypothesis that frequency modulates muscle timing, causing pattern changes analogous to gait transitions. Groups of trained and untrained female subjects were compared to test the hypothesis that experience modifies muscle coordination patterns and the capacity for selective motion of spinal segments. Three distinct coordination patterns were observed. An ipsilateral simultaneous pattern (S) and a diagonal synergy (D) dominated at lower frequencies. The S pattern was selected most often by novices and resembled the standing wave of activation underlying the alternating lateral trunk bending in salamander trotting. At 2 Hz, most trained subjects selected the D pattern, suggesting a greater capacity for segmental specificity compared with untrained subjects. At 3-4 Hz, there emerged an asynchronous pattern (A) analogous to the rostral-caudal traveling wave in salamander and lamprey swimming. The neural networks and mechanisms identified in primitive vertebrates, such as chains of coupled oscillators and segmental crossed inhibitory connections, could explain the patterns observed in this study in humans. Training allows modification of these patterns, possibly through improved capacity for selectively exciting or inhibiting segmental pattern generators. NEW & NOTEWORTHY Belly dance provides a novel approach for studying spinal cord neural circuits. New evidence suggests that primitive locomotor circuits may be conserved in humans. Erector spinae activation patterns during the hip shimmy at different tempos are similar to those observed in salamander walking and swimming. As movement frequency increases, a sequential pattern similar to lamprey swimming emerges, suggesting that primal involuntary control mechanisms dominate in fast lateral rhythmic spine undulations even in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app