Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Differing Requirements for MALT1 Function in Peripheral B Cell Survival and Differentiation.

Journal of Immunology 2017 Februrary 2
During a T cell-dependent immune response, formation of the germinal center (GC) is essential for the generation of high-affinity plasma cells and memory B cells. The canonical NF-κB pathway has been implicated in the initiation of GC reaction, and defects in this pathway have been linked to immune deficiencies. The paracaspase MALT1 plays an important role in regulating NF-κB activation upon triggering of Ag receptors. Although previous studies have reported that MALT1 deficiency abrogates the GC response, the relative contribution of B cells and T cells to the defective phenotype remains unclear. We used chimeric mouse models to demonstrate that MALT1 function is required in B cells for GC formation. This role is restricted to BCR signaling where MALT1 is critical for B cell proliferation and survival. Moreover, the proapoptotic signal transmitted in the absence of MALT1 is dominant to the prosurvival effects of T cell-derived stimuli. In addition to GC B cell differentiation, MALT1 is required for plasma cell differentiation, but not mitogenic responses. Lastly, we show that ectopic expression of Bcl-2 can partially rescue the GC phenotype in MALT1-deficient animals by prolonging the lifespan of BCR-activated B cells, but plasma cell differentiation and Ab production remain defective. Thus, our data uncover previously unappreciated aspects of MALT1 function in B cells and highlight its importance in humoral immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app