Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Deletion of Nlrp3 Augments Survival during Polymicrobial Sepsis by Decreasing Autophagy and Enhancing Phagocytosis.

Journal of Immunology 2017 Februrary 2
NLRP3 inflammasome is a critical player in innate immunity. Neutrophil recruitment to tissues and effective neutrophil function are critical innate immune mechanisms for bacterial clearance. However, the role of NLRP3 in neutrophil-dependent bacterial clearance in polymicrobial sepsis is unclear. In this study, we evaluated the role of NLRP3 in polymicrobial sepsis induced by cecal ligation and puncture (CLP). Our results showed protection from death in NLRP3-deficient (Nlrp3-/- ) and NLRP3 inhibitor-treated wild-type (C57BL/6) mice. Nlrp3-/- and NLRP3 inhibitor-treated mice displayed lower bacterial load but no impairment in neutrophil recruitment to peritoneum. However, neutrophil depletion abrogated protection from death in Nlrp3-/- mice in response to CLP. Intriguingly, following CLP, Nlrp3-/- peritoneal cells (primarily neutrophils) demonstrate decreased autophagy, augmented phagocytosis, and enhanced scavenger receptor (macrophage receptor with collagenous structure) and mannose-binding leptin expression. These findings enhance our understanding of the critical role of NLRP3 in modulating autophagy and phagocytosis in neutrophils and suggest that therapies should be targeted to modulate autophagy and phagocytosis in neutrophils to control bacterial burden in tissues during CLP-induced polymicrobial sepsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app