Add like
Add dislike
Add to saved papers

Incorporating the single-step strategy into a random regression model to enhance genomic prediction of longitudinal traits.

Heredity 2017 December
In prediction of genomic values, the single-step method has been demonstrated to outperform multi-step methods. In statistical analyses of longitudinal traits, the random regression test-day model (RR-TDM) has clear advantages over other models. Our goal in this study was to evaluate the performance of a model that integrates both single-step and RR-TDM prediction methods, called the single-step random regression test-day model (SS RR-TDM), in comparison with the pedigree-based RR-TDM and genomic best linear unbiased prediction (GBLUP) model. We performed extensive simulations to exploit the potential advantages of SS RR-TDM over the other two models under various scenarios with different levels of heritability, number of quantitative trait loci, as well as selection scheme. SS RR-TDM was found to achieve the highest accuracy and unbiasedness under all scenarios, exhibiting robust prediction ability in longitudinal trait analyses. Moreover, SS RR-TDM showed better persistency of accuracy over generations than the GBLUP model. In addition, we also found that the SS RR-TDM had advantages over RR-TDM and GBLUP in terms of its being a real data set of humans contributed by the Genetic Analysis Workshop 18. The findings of our study demonstrated the feasibility and advantages of SS RR-TDM, thus enhancing the strategies for genomic prediction of longitudinal traits in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app