Add like
Add dislike
Add to saved papers

Cathepsin B-degradable, NIR-responsive nanoparticulate platform for target-specific cancer therapy.

Nanotechnology 2017 Februrary 4
Stimuli-responsive anticancer formulations can promote drug release and activation within the target tumour, facilitate cellular uptake, as well as improve the therapeutic efficacy of drugs and reduce off-target effects. In the present work, indocyanine green (ICG)-containing polyglutamate (PGA) nanoparticles were developed and characterized. Digestion of nanoparticles with cathepsin B, a matrix metalloproteinase overexpressed in the microenvironment of advanced tumours, decreased particle size and increased ICG cellular uptake. Incorporation of ICG in PGA nanoparticles provided the NIR-absorbing agent with time-dependent altered optical properties in the presence of cathepsin B. Having minimal dark toxicity, the formulation exhibited significant cytotoxicity upon NIR exposure. Combined use of the formulation with saporin, a ribosome-inactivating protein, resulted in synergistically enhanced cytotoxicity attributed to the photo-induced release of saporin from endo/lysosomes. The results suggest that this therapeutic approach can offer significant therapeutic benefit in the treatment of superficial malignancies, such as head and neck tumours.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app