Add like
Add dislike
Add to saved papers

Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors.

Analytical Chemistry 2017 Februrary 8
Carbon nanotube (CNT)-based flexible sensors have been intensively developed for physical sensing. However, great challenges remain in fabricating stretchable CNT films with high electrochemical performance for real-time chemical sensing, due to large sheet resistance of CNT film and further resistance increase caused by separation between each CNT during stretching. Herein, we develop a facile and versatile strategy to construct single-walled carbon nanotubes (SWNTs)-based stretchable and transparent electrochemical sensors, by coating and binding each SWNT with conductive polymer. As a polymer with high conductivity, good electrochemical activity, and biocompatibility, poly(3,4-ethylenedioxythiophene) (PEDOT) acting as a superior conductive coating and binder reduces contact resistance and greatly improves the electrochemical performance of SWNTs film. Furthermore, PEDOT protects the SWNTs junctions from separation during stretching, which endows the sensor with highly mechanical compliance and excellent electrochemical performance during big deformation. These unique features allow real-time monitoring of biochemical signals from mechanically stretched cells. This work represents an important step toward construction of a high performance CNTs-based stretchable electrochemical sensor, therefore broadening the way for stretchable sensors in a diversity of biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app