Journal Article
Review
Add like
Add dislike
Add to saved papers

Cardiovascular Ion Channel Inhibitor Drug-Drug Interactions with P-glycoprotein.

AAPS Journal 2017 March
P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that plays a major role in cardiovascular drug disposition by effluxing a chemically and structurally diverse range of cardiovascular therapeutics. Unfortunately, drug-drug interactions (DDIs) with the transporter have become a major roadblock to effective cardiovascular drug administration because they can cause adverse drug reactions (ADRs) or reduce the efficacy of drugs. Cardiovascular ion channel inhibitors are particularly susceptible to DDIs and ADRs with Pgp because they often have low therapeutic indexes and are commonly coadministered with other drugs that are also Pgp substrates. DDIs from cardiovascular ion channel inhibitors with the transporter occur because of inhibition or induction of the transporter and the transporter's tissue and cellular localization. Inhibiting Pgp can increase absorption and reduce excretion of drugs, leading to elevated drug plasma concentrations and drug toxicity. In contrast, inducing Pgp can have the opposite effect by reducing the drug plasma concentration and its efficacy. A number of in vitro and in vivo studies have already demonstrated DDIs from several cardiovascular ion channel inhibitors with human Pgp and its animal analogs, including verapamil, digoxin, and amiodarone. In this review, Pgp-mediated DDIs and their effects on pharmacokinetics for different categories of cardiovascular ion channel inhibitors are discussed. This information is essential for improving pharmacokinetic predictions of cardiovascular therapeutics, for safer cardiovascular drug administration and for mitigating ADRs emanating from Pgp.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app