Add like
Add dislike
Add to saved papers

The protective effect of resveratrol in the transmission of neuropathic pain mediated by the P2X 7 receptor in the dorsal root ganglia.

The P2X7 receptor mediates afferent nerve activation and is related to chronic neuropathic pain. Resveratrol (RES) has also been reported to exhibit anti-inflammatory effects. In this study, we investigated the neuroprotective effect of RES on the transmission of neuropathic pain mediated by the P2X7 receptor. The P2X7 mRNA and protein expression levels in L4-L5 dorsal root ganglia (DRG)s of the chronic constriction injury (CCI) group were significantly higher than those observed in the Ctrl + NS, Sham + RES and Sham groups. RES increased the threshold of thermal and mechanical hypersensitivity in rats with chronic neuropathic pain. The P2X7 mRNA and protein expression levels in the CCI + RES group were decreased compared with those in the CCI group. Our results showed that RES inhibited the upregulated co-expression of P2X7 and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in satellite glial cells of DRG in the CCI group. The results demonstrated that the expression of GFAP was increased in the CCI group and that RES inhibited the upregulated expression of GFAP in the rats in the CCI group. In addition, the phosphorylation levels of p38 and extracellular regulated protein kinases (ERK)1/2 in the CCI group were markedly higher than those observed in the Ctrl + NS, Sham + RES and Sham groups, whereas the phosphorylation levels of p38 and ERK1/2 in CCI + RES group were markedly lower than those observed in the CCI group. RES inhibited BzATP-activated currents in DRG non-neurons in the CCI rats. Our data provide evidence that RES may suppress the transmission of neuropathic pain mediated by the P2X7 receptor in the satellite glial cells of dorsal root ganglia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app