JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity.

Biomaterials 2017 March
For establishment of cancer immunotherapy, antigen carriers are needed which have functions not only to deliver antigen into cytosol of dendritic cells (DCs), which induces antigen-specific cellular immune responses, but also to activate DCs. We previously reported cytoplasmic delivery of antigen using liposomes modified with pH-sensitive polymers such as carboxylated poly(glycidol)s or dextran. Modification using these polymers provides stable liposomes with pH-sensitive fusogenic/membrane-disruptive ability. For this study, bioactive polysaccharide-based pH-sensitive polymers were constructed to achieve not only cytoplasmic delivery of antigen but also activation of DCs. Curdlan and mannan were used as bioactive polysaccharides because they are known to activate DCs via their respective interactions with Dectin-1 and Dectin-2. Carboxylated curdlan and mannan promoted Th1 cytokine production from DCs, indicating the activation of DCs by these polysaccharide derivatives. These polymer-modified liposomes released their contents at weakly acidic pH and delivered model antigenic proteins into cytosol of DCs. Subcutaneous administration of curdlan derivative-modified or mannan derivative-modified liposomes induced strong antigen-specific immune responses and stronger antitumor effects than those of liposomes modified with dextran derivative. Therefore, bioactive polysaccharide-modified liposomes that achieve both cytoplasmic delivery of antigen and activation of DCs are promising for cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app