Add like
Add dislike
Add to saved papers

Experimental Rat Skin Flap Model That Distinguishes between Venous Congestion and Arterial Ischemia: The Reverse U-Shaped Bipedicled Superficial Inferior Epigastric Artery and Venous System Flap.

BACKGROUND: The commonly used flap models have drawbacks that limit their usefulness. In the random skin flap model, flap necrosis is caused by both arterial and venous insufficiency. In the axial skin flap model, flap viability is easily affected by the pedicle blood flow and can result in complete necrosis. This study aimed to establish a new rat skin flap model that has a consistent flap survival rate and in which venous congestion and arterial ischemia can be readily distinguished macroscopically.

METHODS: Rats underwent reverse U-shaped bipedicled superficial epigastric artery flap elevation. The right superficial epigastric vessels formed the pedicle. In the control rats (n = 3), the left superficial epigastric vessels were left intact. In the ischemia group (n = 10), the left superficial epigastric artery was ligated. In the congestion group (n = 10), the left superficial epigastric vein was ligated. The flap was returned to the original site and sutured. The surrounding neovascularization was blocked by polyurethane film. Flap survival rates were evaluated on postoperative day 3.

RESULTS: The flaps in the ischemia and congestion groups were noticeably pale and violet, respectively. Flap necrosis was noted in the contralateral distal zone only. It started on postoperative day 2 in the ischemia and congestion groups. The mean flap survival rates of the control, ischemia, and congestion groups were 100 percent, 61.8 percent (range, 56.9 to 67.1 percent), and 42.3 percent (35.7 to 48.7 percent), respectively (all p < 0.001).

CONCLUSIONS: The flap facilitated discrimination of the effects of ischemia and congestion. This new rat skin flap model is simple and easy to construct, and has a consistent flap survival rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app