JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Detection of smoke-induced pulmonary lesions by hyperpolarized 129 Xe diffusion kurtosis imaging in rat models.

PURPOSE: To demonstrate that hyperpolarized (HP) xenon diffusion kurtosis imaging (DKI) is able to detect smoke-induced pulmonary lesions in rat models.

METHODS: Multi-b DKI with hyperpolarized xenon was used for the first time in five smoke-exposed rats and five healthy rats. Additionally, DKI with b values of up to 80 s/cm2 were used in two healthy rats to probe the critical b value (a limit beyond which the DKI cannot describe the non-Gaussian diffusion).

RESULTS: The mean apparent diffusion coefficient (Dapp ) and diffusion kurtosis (Kapp ) extracted by the DKI model revealed significant changes in the smoke-exposed rats compared with those in the control group (P = 0.027 and 0.039, respectively), exhibiting strong correlations with mean linear intercept (Lm ) from the histology. Although the maximum b value was increased to 80 s/cm2 , the DKI could still describe the non-Gaussian diffusion (R2  > 0.97).

CONCLUSION: DKI with hyperpolarized xenon exhibited sensitivity in the detection of pulmonary lesions induced by smoke, including moderate emphysema and small airway diseases. The critical b value was rarely exceeded in DKI of the lungs due to the limited gradient strength of the MRI scanner used in our study. Magn Reson Med 78:1891-1899, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app