Add like
Add dislike
Add to saved papers

Semiautomatic classification of acetabular shape from three-dimensional ultrasound for diagnosis of infant hip dysplasia using geometric features.

PURPOSE: Developmental dysplasia of the hip (DDH) is a congenital deformity which in severe cases leads to hip dislocation and in milder cases to premature osteoarthritis. Image-aided diagnosis of DDH is partly based on Graf classification which quantifies the acetabular shape seen at two-dimensional ultrasound (2DUS), which leads to high inter-scan variance. 3D ultrasound (3DUS) is a promising alternative for more reliable DDH diagnosis. However, manual quantification of acetabular shape from 3DUS is cumbersome.

METHODS: Here, we (1) propose a semiautomated segmentation algorithm to delineate 3D acetabular surface models from 3DUS using graph search; (2) propose a fully automated method to classify acetabular shape based on a random forest (RF) classifier using features derived from 3D acetabular surface models; and (3) test diagnostic accuracy on a dataset of 79 3DUS infant hip recordings (36 normal, 16 borderline, 27 dysplastic based on orthopedic surgeon assessment) in 42 patients. For each 3DUS, we performed semiautomated segmentation to produce 3D acetabular surface models and then calculated geometric features including the automatic [Formula: see text]lpha (AA), acetabular contact angle (ACA), kurtosis (K), skewness (S) and convexity (C). Mean values of features obtained from surface models were used as inputs to train a RF classifier.

RESULTS: Surface models were generated rapidly (user time 46.2 s) via semiautomated segmentation and visually closely correlated with actual acetabular contours (RMS error 1.39 ± 0.7 mm). A paired nonparametric u test on of feature values in each category showed statistically significant variation (p < 0.001) for AA, ACA and convexity. The RF classifier was 100 % specific and 97.2 % sensitive in classifying normal versus dysplastic hips and yielded true positive rates of 94.4, 62.5 and 89.9 % for normal, borderline and dysplastic hips.

CONCLUSIONS: The proposed technique reduces the subjectivity of image-aided DDH diagnosis and could be useful in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app