Add like
Add dislike
Add to saved papers

Nano- and Microstructured model carrier surfaces to alter dry powder inhaler performance.

The present study investigates the effect of different carrier surface modifications on the aerosolisation performance and on the effective carrier payload of interactive blends for inhalation. Two different active pharmaceutical ingredients (APIs) were used: Formoterol fumarate dihydrate (FF) and budesonide (BUD). Blends were prepared with glass beads as model carriers which have been subjected to mechanical surface modifications in order to introduce surface roughness via treatment with hydrofluoric acid (HF) and/or milling with tungsten carbide (TC). As far as effective carrier payload, in this study expressed as true surface coverage (TSC), is concerned, surface modification had varying effects on blends containing BUD or FF. Aerodynamic characterisation in vitro showed a significant decrease in respirable fraction for glass beads treated with HF (40.2-50.1%), due to the presence of clefts and cavities, where drug particles were sheltered during inhalation. In contrast, grinding with TC leads to surface roughness on a nano scale, ultimately increasing aerodynamic performance up to 20.0-38.1%. These findings are true for both APIs, regardless of their chemical properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app