Add like
Add dislike
Add to saved papers

The rational designed graphene oxide-Fe 2 O 3 composites with low cytotoxicity.

Novel two-dimensional materials with a layered structure are of special interest for a variety of promising applications. In current research, the nanostructured graphene oxide-Fe2 O3 composite (GO-Fe2 O3 ) was firstly obtained via a carefully elaborated approach of vacuum freeze-drying. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images revealed that α-Fe2 O3 nanoparticles loaded well on the surfaces of graphene. A series of characterization were performed to further elucidate the as-obtained nanomaterial's physicochemical properties. These results suggested the current route could be further extended to obtain the other kinds of two-dimensional materials based composites. For the sake of extending the potential application of herein achieved graphene composites, its cytotoxicity assessment on HeLa cells was systematically investigated. CCK-8 assay in HeLa cells treated by GO-Fe2 O3 showed dose- (1-100μg/ml) and time- (24-48h) dependent cytotoxicity, which was comparable to that of GO. The excess generation of intracellular reactive oxygen species (ROS) induced by these nanomaterials was responsible for the cytotoxicity. TEM analysis vividly illustrated GO-Fe2 O3 internalized by HeLa cells in endomembrane compartments such as lysosomes, and degraded through autophagic pathway. The detrimental biological consequence accompanied by cell internalization was limited. Based on the above results, it expected to render useful information for the development of new and popular strategies to design graphene-based composites, as well as deep insights into the mechanism of graphene-based composites cytotoxicity for further potential application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app