Add like
Add dislike
Add to saved papers

Microstructure and mechanical properties of a newly developed low Young's modulus Ti-15Zr-5Cr-2Al biomedical alloy.

The Ti-15Zr-5Cr-2Al alloy has been developed and various heat treatments have been investigated to develop new biomedical materials. It is found that the heat treatment conditions strongly affect the phase constitutions and mechanical properties. The as-cast specimen is comprised of β phase and a small fraction of α phase, which is attributed to the suppression of ω phase caused by adding Al. A high yield strength of 1148±36MPa and moderate Young's modulus of 96±3GPa are obtained in the as-cast specimen. Besides the β phase and α phase, ω phase is also detected in the air cooled and liquid nitrogen quenched specimens, which increases the Young's modulus and lowers the ductility. In contrast, only β phase is detected after ice water quenching. The ice water quenched specimen exhibits a good combination of mechanical properties with a high microhardness of 302±10HV, a large plastic strain of 23±2%, a low Young's modulus of 58±4GPa, a moderate yield strength of 625±32MPa and a high compressive strength of 1880±59MPa. Moreover, the elastic energies of the ice water quenched specimen (3.22MJ/m3 ) and as-cast specimen (6.86MJ/m3 ) are higher than that of c.p. Ti (1.25MJ/m3 ). These results demonstrate that as-cast and ice water quenched Ti-15Zr-5Cr-2Al alloys with a superior combination of mechanical properties are potential materials for biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app