Add like
Add dislike
Add to saved papers

Design of starch-formate compound fibers as encapsulation platform for biotherapeutics.

Carbohydrate Polymers 2017 Februrary 21
Effective encapsulation and protection of biotherapeutics using a bio-based carrier, preferably issued from renewable resources, remains a challenge. Herein, we demonstrate application of coaxial electrospinning to fabric starch-based core-sheath compound fibers as a bacterial cells' carrier. Starch-formate is employed as an encapsulation agent, while the fiber core is made of glycerol, serving as a cell suspension medium. SEM microscopy reveals a distinct core-sheath morphology of the starch-formate/glycerol (SFG) compound fibers with mean diameters of 4.13±1.05μm. Calorimetric and thermomechanical analyses and FTIR spectroscopy show a progressive interaction between the starch-formate and the glycerol with time, pronounced with temperature increase. SFG fibers with encapsulated Lactobacillus paracasei are proved stable with retained bacterial viability when stored at 4°C and room temperature for up to 21days. SFG fibers present a potential biotherapeutic products' encapsulation platform, guaranteeing the stability at refrigerated and ambient storage conditions, as determined in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app