Add like
Add dislike
Add to saved papers

Effects of pentachlorophenol and dichlorodiphenyltrichloroethane on secretion of interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) from human immune cells.

Pentachlorophenol (PCP) and dichlorodiphenyltrichloroethane (DDT) are pesticides that have been widely used and significantly contaminate the environment. Both are found in human blood and have been shown to alter the lytic and binding function of human natural killer (NK) cells. Interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) are pro-inflammatory cytokines, which regulate immune responsiveness to pathogens and tumors. Their levels require very tight control to prevent loss of immune competence or excessive inflammation. Here, we examined the capacity of PCP and DDT to alter the secretion of these critical pro-inflammatory cytokines from increasingly reconstituted (more complex) preparations of human immune cells which included NK cells, monocyte-depleted (MD) peripheral blood mononuclear cells (PBMCs) (a preparation that is predominantly lymphocytes) and PBMCs (a preparation containing lymphocytes and monocytes). Results indicated that exposure to PCP decreased IFNγ secretion at the highest exposures (2.5 and 5 μM) and increased IFNγ secretion at lower concentrations. These effects were seen irrespective of the complexity of the cell preparation. PCP at 2.5 and 5 μM generally decreased TNFα secretion from NK cells, but had inconsistent effects in MD-PBMCs and PBMCs. Exposure of each of the immune cell preparations to DDT caused increase in IFNγ secretion. DDT (2.5 μM) increased TNFα secretion from MD-PBMCs after either 24 h or 48 h of exposure. The mechanism of PCP-induced increase in IFNγ secretion appears to involve the p38 mitogen activated protein kinase (MAPK) pathway, based on loss of PCP stimulated increase when this pathway was inhibited.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app