JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Bound Layers "Cloak" Nanoparticles in Strongly Interacting Polymer Nanocomposites.

ACS Nano 2016 December 28
Polymer-nanoparticle (NP) interfacial interactions are expected to strongly influence the properties of nanocomposites, but surprisingly, experiments often report small or no changes in the glass transition temperature, Tg . To understand this paradoxical situation, we simulate nanocomposites over a broad range of polymer-NP interaction strengths, ε. When ε is stronger than the polymer-polymer interaction, a distinct relaxation that is slower than the main α-relaxation emerges, arising from an adsorbed "bound" polymer layer near the NP surface. This bound layer "cloaks" the NPs, so that the dynamics of the matrix polymer are largely unaffected. Consequently, Tg defined from the temperature dependence of the routinely measured thermodynamics or the polymer matrix relaxation is nearly independent of ε, in accord with many experiments. Apparently, quasi-thermodynamic measurements do not reliably reflect dynamical changes in the bound layer, which alter the overall composite dynamics. These findings clarify the relation between quasi-thermodynamic Tg measurements and nanocomposite dynamics, and should also apply to thin polymer films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app