Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functionalized Nano-MoS 2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications.

ACS Nano 2016 December 28
We have developed a biocompatible antibacterial system based on polyethylene glycol functionalized molybdenum disulfide nanoflowers (PEG-MoS2 NFs). The PEG-MoS2 NFs have high near-infrared (NIR) absorption and peroxidase-like activity, which can efficiently catalyze decomposition of low concentration of H2 O2 to generate hydroxyl radicals (·OH). The conversion of H2 O2 into ·OH can avoid the toxicity of high concentration of H2 O2 and the ·OH has higher antibacterial activity, making resistant bacteria more vulnerable and wounds more easily cured. The PEG-MoS2 NFs combine the catalysis with NIR photothermal effect, providing a rapid and effective killing outcome in vitro for Gram-negative ampicillin resistant Escherichia coli (Ampr E. coli) and Gram-positive endospore-forming Bacillus subtilis (B. subtilis) as compared to catalytic treatment or photothermal therapy (PTT) alone. Wound healing results indicate that the synergy antibacterial system could be conveniently used for wound disinfection in vivo. Interestingly, glutathione (GSH) oxidation can be accelerated due to the 808 nm irradiation induced hyperthermia at the presence of PEG-MoS2 NFs proved by X-ray near-edge absorption spectra and X-ray spectroscopy. The accelerated GSH oxidation can result in bacterial death more easily. A mechanism based on ·OH-enhanced PTT is proposed to explain the antibacterial process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app