Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch.

ACS Nano 2016 December 28
Nanoscale plasmonic waveguides composed of metallic nanoparticles are capable of guiding electromagnetic energy below the optical diffraction limit. Signal feed-in and readout typically require the utilization of electronic effects or near-field optical techniques, whereas for their fabrication mainly lithographic methods are employed. Here we developed a switchable plasmonic waveguide assembled from gold nanoparticles (AuNPs) on a DNA origami structure that facilitates a simple spectroscopic excitation and readout. The waveguide is specifically excited at one end by a fluorescent dye, and energy transfer is detected at the other end via the fluorescence of a second dye. The transfer distance is beyond the multicolor FRET range and below the Abbé limit. The transmittance of the waveguide can also be reversibly switched by changing the position of a AuNP within the waveguide, which is tethered to the origami platform by a thermoresponsive peptide. High-yield fabrication of the plasmonic waveguides in bulk was achieved using silica particles as solid supports. Our findings enable bulk solution applications for plasmonic waveguides as light-focusing and light-polarizing elements below the diffraction limit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app