Add like
Add dislike
Add to saved papers

Oriented growth of poly(m-phenylenediamine) on Calotropis gigantea fiber for rapid adsorption of ciprofloxacin.

Chemosphere 2017 March
A facile polymerization of m-phenylenediamine (mPD) in methanol/water (50:50, v/v) was performed via conventional chemical oxidative method by using Calotropis gigantea fiber (CGF) as the natural biotemplate. The as-prepared CGF oriented poly(m-phenylenediamine) (PmPD), i.e. CGF-O-PmPD, exhibits a well defined fiber-oriented morphology. The presence of PmPD layer enables CGF-O-PmPD to present roughen surface with N-rich functional groups that can show high performance for the adsorption of ciprofloxacin. The variables affecting the adsorption capacity were systematically investigated, including contact time, initial concentration, initial pH, ion strength, and so forth. The experimental data reveal that with increasing the amount of mPD from 0.2, 0.5 to 2.0 g, the adsorption capacity for ciprofloxacin shows a monotonic decrease, while the adsorption kinetics show a monotonic increase, with the adsorption percentage from >50%, >60% to >70% within 10 s, demonstrating its superfast adsorption kinetics for ciprofloxacin. In addition, an increasing adsorption capacity is observed over the pH range studied, with the adsorption capacity from 0.73 to 6.7 mg g-1 at pH 2.0 to 64.9-77.3 mg g-1 at pH 10.0. After five adsorption-desorption cycles, the adsorption capacity of CGF-O-PmPD for ciprofloxacin shows no significant decrease, indicating its excellent reusability and potential application in treating antibiotic-containing wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app