JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Hairy and Enhancer of Split-Related With YRPW Motif-Like (HeyL) Is Dispensable for Bone Remodeling in Mice.

Notch induces Hairy Enhancer of Split (Hes)1 and Hes-related with YRPW motif (Hey) Hey1, Hey2 and Hey-like (HeyL) expression in osteoblasts, but it is not known whether any of these target genes mediates the effect of Notch in the skeleton. We demonstrated that Notch1 activation in osteoblasts/osteocytes induces Hes1, Hey1, Hey2, and HeyL, but HeyL was induced to a greater extent than other target genes. To characterize HeyL null mice for their skeletal phenotype, microcomputed tomography (µCT) and histomorphometric analysis of HeyL null and sex-matched littermate controls was performed. µCT demonstrated modest cancellous bone osteopenia in 1 month old male mice and normal microarchitecture in 3 month old male HeyL null mice. Female HeyL null mice were not different from controls at either 1 or 3 months of age. Bone histomorphometry did not demonstrate differences between HeyL null mice of either sex and littermate controls. In conclusion, HeyL null mice do not exhibit an obvious skeletal phenotype demonstrating that HeyL is dispensable for skeletal homeostasis. J. Cell. Biochem. 118: 1819-1826, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app