Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nuclear paramagnetism-induced MR frequency shift and its implications for MR-based magnetic susceptibility measurement.

PURPOSE: To investigate the 1 H spin contribution (0.004 parts per million (ppm)) to the water magnetic susceptibility and discuss its implications for high-precision phase mapping and tissue susceptibility measurement.

METHODS: Free induction decay (FID) signals were acquired at 3 Tesla (T) and 9.4T from thin square phantoms at a range of tip angles. The FID frequency shift was examined at a high resolution ( < 0.01 Hz) for different phantom orientations relative to the main magnetic field (B0 ). B0 maps on an axial and a coronal slice of a spherical phantom were obtained at 3T to examine the tip angle and orientation dependence at the 0.001 ppm level.

RESULTS: A frequency shift of about 0.3 Hz was observed between tip angles of 10 ° and 90 ° when the thin phantom was normal to B0 at 3T, whereas the shift changed sign and was halved in magnitude when the phantom's face was parallel to B0 . At 9.4T, the effect size increased proportionately. The orientation-dependent frequency shift was also observed in the B0 map experiment. These observations agree with theoretical frequency shift due to longitudinal 1 H spin polarization.

CONCLUSION: Magnetic susceptibility contribution from the nuclear paramagnetism should be taken into account in the interpretation of high-precision phase and susceptibility mapping in MRI. Magn Reson Med 77:848-854, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app