Add like
Add dislike
Add to saved papers

Synthesis and characterization of azo-guanidine based alcoholic media naked eye DNA sensor.

DNA sensing always has an open meadow of curiosity for biotechnologists and other researchers. Recently, in this field, we have introduced an emerging class of molecules containing azo and guanidine functionalities. In this study, we have synthesized three new compounds (UA1, UA6 and UA7) for potential application in DNA sensing in alcoholic medium. The synthesized materials were characterized by elemental analysis, FTIR, UV-visible, (1)H NMR and (13)C NMR spectroscopies. Their DNA sensing potential were investigated by UV-visible spectroscopy. The insight of interaction with DNA was further investigated by electrochemical (cyclic voltammetry) and hydrodynamic (viscosity) studies. The results showed that compounds have moderate DNA binding properties, with the binding constants range being 7.2 × 10(3), 2.4 × 10(3) and 0.2 × 10(3) M(-1), for UA1, UA6 and UA7, respectively. Upon binding with DNA, there was a change in colour (a blue shift in the λmax value) which was observable with a naked eye. These results indicated the potential of synthesized compounds as DNA sensors with detection limit 1.8, 5.8 and 4.0 ng µl(-1) for UA1, UA6 and UA7, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app