Add like
Add dislike
Add to saved papers

The (95)(Δ)G mutation in the 5'untranslated region of the norA gene increases efflux activity in Staphylococcus epidermidis isolates.

Microbial Pathogenesis 2017 Februrary
In the Staphylococcus aureus ATCC25923 strain, the flqB mutation in the 5'untranslated region (5'UTR) of the norA gene causes increased norA mRNA expression and high efflux activity (HEA). The involvement of the norA gene 5'UTR in HEA has not been explored in S. epidermidis; therefore, we examined the function of this region in S. epidermidis clinical isolates. The selection of isolates with HEA was performed based on ethidium bromide (EtBr) MIC values and efflux efficiency (EF) using the semi-automated fluorometric method. The function of the 5'UTR was studied by quantifying the levels of norA expression (RT-qPCR) and by identifying 5'UTR mutations by sequence analysis. Only 10 isolates from a total of 165 (6.1%) had HEA (EtBr MIC = 300 μg/ml and EF ranged from 48.4 to 97.2%). Eight of 10 isolates with HEA had the 5'UTR (95)(Δ)G mutation. Isolates carrying the (95)(Δ)G mutation had higher levels of norA expression compared with those that did not. To corroborate that the (95)(Δ)G mutation is involved in HEA, a strain adapted to EtBr was obtained in vitro. This strain also presented the (95)(Δ)G mutation and had a high level of norA expression and EF, indicating that the (95)(Δ)G mutation is important for the HEA phenotype. The (95)(Δ)G mutation produces a different structure in the Shine-Dalgarno region, which may promote better translation of norA mRNA. To our knowledge, this is the first report to demonstrate the participation of the 5'UTR (95)(Δ)G mutation of the norA gene in the HEA phenotype of S. epidermidis isolates. Here, we propose that the efflux of EtBr is caused by an increment in the transcription and/or translation of the norA gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app