Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Deficiency of succinyl-CoA synthetase α subunit delays development, impairs locomotor activity and reduces survival under starvation in Drosophila.

Succinyl-CoA synthetase/ligase (SCS) is a mitochondrial enzyme that catalyzes the reversible process from succinyl-CoA to succinate and free coenzyme A in TCA cycle. SCS deficiencies are implicated in mitochondrial hepatoencephalomyopathy in humans. To investigate the impact of SCS deficiencies in Drosophila, we generated a null mutation in Scs alpha subunit (Scsα) using the CRISPR/Cas9 system, and characterized their phenotype. We found that the Drosophila SCS deficiency, designated ScsαKO , contained a high level of succinyl-CoA, a substrate for the enzyme, and altered levels of various metabolites in TCA cycle and glycolysis, indicating that the energy metabolism was impaired. Unlike SCSα deficiencies in humans, there was no reduction in lifespan, indicating that Scsα is not critical for viability in Drosophila. However, they showed developmental delays, locomotor activity defects, and reduced survival under starvation. We also found that glycogen breakdown occurred during development, suggesting that the mutant flies were unable to produce sufficient energy to promote normal growth. These results suggested that SCSα is essential for proper energy metabolism in Drosophila. The ScsαKO flies should be useful as a model to understand the physiological role of SCSα as well as the pathophysiology of SCSα deficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app