Add like
Add dislike
Add to saved papers

Magnetite Nanoparticles-Supported APTES as a Powerful and Recoverable Nanocatalyst for the Preparation of 2-Amino-5,10-dihydro- 5,10-dioxo-4H-benzo[g]chromenes and Tetrahydrobenzo[g]quinoline-5,10- diones.

AIM AND OBJECTIVE: This study introduces a green and effective approach for the preparation of biologically-active heterocyclic compounds including 2-amino-5,10-dihydro-5,10-dioxo-4Hbenzo[ g]chromenes and tetrahydrobenzo[g]quinoline-5,10-diones using one-pot multi-component reactions in the presence of Fe3O4@SiO2-NH2 nanocomposite. The preparation and use of aminofunctionalized Fe3O4@SiO2 as a powerful and reusable nanocatalyst is described. The catalyst was characterized by spectral techniques including FT-IR, SEM, XRD, EDX and VSM analysis. This method offers the advantages of high yields, short reaction times, comfortable work-up and reusability of the catalyst.

MATERIAL AND METHOD: The amino-functionalization silica-coated magnetite nanocomposite was prepared by three step method and the structure elucidation of the nanocatalyst has been done using various spectroscopic analyses. Then, the Fe3O4@SiO2-NH2 nanocomposite was used in the multicomponent synthesis of 2-amino-5,10-dihydro-5,10-dioxo-4H-benzo[g]chromenes and tetrahydrobenzo[g]quinoline-5,10-diones under reflux conditions. All of the products were analyzed with m.p., 1H NMR, 13C NMR and FT-IR spectroscopy techniques. The study on the recoverability of the nanocatalyst showed the recovered Fe3O4@SiO2-NH2 nanocomposite could be reused sixth consecutive times with a little-decreased activity.

RESULTS: Amino-functionalized SiO2 coated Fe3O4 nanocomposite exhibited superparamagnetic behavior and strong magnetization at room temperature. The average crystallite sizes of the catalyst was about 50-60 nm. The obtained magnetic nanocomposite showed excellent catalytic activity as a new heterogeneous magnetic catalyst for the synthesis of some benzo[g]chromenes and tetrahydrobenzo[g]quinoline-5,10-diones. We propose that NH2 groups on the surfaces of nanocomposite act as the Brønsted base and cause to dehydrogenation of substrates to promote the reactions.

CONCLUSION: It was found that Fe3O4@SiO2-NH2 nanocomposite act as an eco-friendly and efficient catalyst for one-pot synthesis of three/four component condensation reactions. In this research, aminofunctionalized Fe3O4@SiO2 was used as recoverable catalyst for the synthesis of 2-amino-5,10- dihydro-5,10-dioxo-4H-benzo[g]chromenes and tetrahydrobenzo[g]quinoline-5,10-diones under reflux conditions. The significant advantages of this method are the reasonably simple work-up, little catalyst loading, short reaction times, excellent yields, non-hygroscopic quality and reusability of the nanocatalyst which is in good agreement with green chemistry disciplines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app