Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electron-Transfer Rates in Host-Guest Assemblies at β-Cyclodextrin Monolayers.

The effect of the distance between a β-cyclodextrin (βCD) host core and a conductive substrate on the electron-transfer rate of complexed guests as well as of free-diffusing electrochemically active probes has been studied. First we have evaluated a set of short-tethered βCD adsorbates bearing different anchoring groups in order to get a reliable platform for the study of short-distance electron transfer. An electrochemically active trivalent guest was immobilized on these host monolayers in a selective and reversible manner, providing information about the packing density. Iodine- and nitrile-functionalized βCD monolayers gave coverages close to maximum packing. Electron transfer in the presence of Fe(CN)6 3-/4- studied by impedance spectroscopy revealed that the electron transfer of the diffusing probe was 3 orders of magnitude faster than when the βCD cores were separated from the surface by undecyl chains. When an electrochemically active guest was immobilized on the surface, electron-transfer rate measurements by cyclic voltammetry and capacitance spectroscopy showed differences of up to a factor of 8 for different βCD monolayers. These results suggest that increasing the distance between the βCD core and the underlying conductive substrate leads to a diminishing of the electron-transfer rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app