Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Methods for Investigating Biofilm Inhibition and Degradation by Antimicrobial Peptides.

Multidrug-resistant bacteria are a growing problem worldwide. One extensively studied resistance mechanism is biofilm colonization-microbial colonies formed by many Gram-positive and Gram-negative bacteria species. Cationic antimicrobial peptides (AMPs) are innate immune system molecules serving as a first line of defense in fighting invading pathogens. The AMPs' underlying mechanism and biophysical properties required for anti-biofilm activity are not fully known. Here we present protocols for investigating AMPs' biological activity against major stages of biofilm life cycle, namely, planktonic stage (MIC assay), initial adhesion to surfaces (bacterial attachment assay), and formation or degradation of sessile microcolonies (biofilm formation and degradation assays). Furthermore, we demonstrate experiments that allow determination and comparison between peptide biophysical properties (secondary structure, hydrophobicity, and oligomerization) and how they affect their mechanism (peptide-binding assays) of anti-biofilm activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app