Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diesel Exhaust Particles Contribute to Endothelia Apoptosis via Autophagy Pathway.

Epidemiological studies suggest that an increase of PM2.5 diesel exhaust particles (DEP) in ambient air corresponds to increased myocardial infarctions and atherosclerosis. When exposed to DEP, endothelial cells exhibit increases in oxidative stress and apoptosis, but the role of autophagy in this DEP-induced cell death remains unclear. Here, we suggest that acute DEP exposure produces intracellular reactive oxygen species (ROS) leading to induction of DEP internalization, endothelial dysfunction, and pro-inflammation in an in vitro human umbilical vein endothelial cells (HUVEC) model. This study found that increases in intracellular oxidative stress and cellular internalization of DEP occurred within 2 h of exposure to DEP. After 2 h of DEP exposure, Mdm2 expression was increased, which triggered cellular autophagy after 4 h of DEP exposure and suppressed cellular senescence. Unfortunately, phagocytized DEP could not be eliminated by cellular autophagy, which led to a continuous buildup of ROS, an increased release of cytokines, and an increased expression of anchoring molecules. After 12 h of DEP exposure, HUVEC reduced Mdm2 expression leading to increased p53 expression, which triggered apoptosis and ultimately resulted in endothelial dysfunction. On the other hand, when cells lacked the ability to induce autophagy, DEP was unable to induce cell senescence and most of the cells survived with only a small percentage of the cells undergoing necrosis. The results presented in this study clearly demonstrate the role cellular autophagy plays in DEP-induced atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app