Add like
Add dislike
Add to saved papers

Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1.

Thrombosis Research 2017 Februrary
INTRODUCTION: Both vascular endothelial cells and platelets are sensitive to blood flow induced shear stress. We have recently reported that platelet-endothelial cell interaction could greatly affect platelet activation under flow. In the present study, we aimed to investigate how platelet-endothelial cell interaction affected endothelial cell inflammatory responses under flow.

MATERIALS AND METHODS: Human coronary artery endothelial cells were exposed to normal or low pulsatile shear stress with or without the presence of platelets. Following shear exposure, endothelial cell ICAM-1 expression was measured using ELISA, Western blot and PCR; cell surface PECAM-1 expression/phosphorylation was measured using ELISA. Platelet adhesion to endothelial cells was quantified using immunofluorescence microscopy. To determine the role of PECAM-1 in platelet-endothelial cell interaction, endothelial cell PECAM-1 expression was suppressed using siRNA.

RESULTS: Pathological low shear stress induced a significant increase in endothelial cell ICAM-1 expression, at both protein and mRNA levels. Platelet adhesion to endothelial cells increased significantly under low shear stress, co-localizing with PECAM-1 at endothelial cell junctions. The presence of platelets inhibited low shear stress-induced ICAM-1 upregulation. When endothelial cell PECAM-1 expression was suppressed, platelet adhesion to endothelial cells under low shear stress decreased significantly; endothelial cell ICAM-1 expression was not affected by shear stress, with or without platelets.

CONCLUSIONS: These results suggested that PECAM-1 could mediate platelet adhesion to endothelial cells under shear stress. Platelets binding to endothelial cells interfered with endothelial cell mechanotransduction through PECAM-1, affecting endothelial cell inflammatory responses towards pathological shear flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app