Add like
Add dislike
Add to saved papers

Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules.

This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27mmol TNT/g, 0.22mmol 2,6-DNT/g, 0.31mmol 2,4-DNT/g and 0.16mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20mM corresponding nitroaromatics with varying diffraction red shifts of 84nm (TNT), 46nm (2,6-DNT), 54nm (2,4-DNT) and 35nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design, the sensor array can illustrate the influence of the nitryl quantity and generate a separate response region of nitroaromatics for pattern recognition with 95.25% of variance explained in the measurements by the first three principal components (PCs). The statistical analysis endowed the cross-reactive array with better classification and identification ability and this novel detection platform provided a wider applied range among other harmful chemicals in a simple sensor array with customized functionality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app