Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antileukemic activity of an arsenomolybdate in the human HL-60 and U937 leukemia cells.

The antileukemic activity, mechanisms and serum albumin interactions of an arsenomolybdate, K2 Na[AsMo6 O21 (O2 CCH2 NH3 )3 ]·6H2 O (1), was evaluated in the human leukemia HL-60 and U937 cells. The results indicated that 1 could inhibit the proliferation of both leukemia cell lines in a dose-dependent manner with the 50% lethal concentration (IC50 ) value of 8.61μM for HL-60 and 14.50μM for U937 at 24h, compare to the positive controls, all-trans retinoic acid (ATRA) with IC50 value of 20.76μM and 14.85μM,and As2 O3 with IC50 value of 6.40μM and 8.75μM at 24h, respectively (P<0.05). Furthermore, the anti-leukemia activity of compound 1 might be medicated by arresting the leukemic cells in the G1 phase and inducing apoptosis via caspase-3 and bcl-2 regulatory proteins. Spectroscopic techniques results showed that the fluorescence of human serum albumin was quenched by compound 1, and the quenching mechanism was mainly static quenching. Compound 1 might be a potential medicinal candidate against acute promyelocytic leukemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app