Add like
Add dislike
Add to saved papers

Parkinsonism-associated protein DJ-1 is a bona fide deglycase.

We discovered recently that Parkinsonism-associated DJ-1 and its bacterial homologs function as protein deglycases that repair glyoxal- and methylglyoxal-glycated proteins. Protein glycation levels are 2- to 10-fold increased in deglycase-depleted cells, and deglycase mutants display up to 500-fold loss of viability in methylglyoxal or glucose-containing media, suggesting that these deglycases play important roles in protecting cells against electrophile and carbonyl stress. Although the deglycase activity of DJ-1 is well supported by extensive biochemical work, Pfaff et al. (J. Biol. Chem. in presshttps://dx.doi.org/10.1074/jbc.M116.743823) claimed in a recent study that deglycation of the hemithioacetal formed upon cysteine glycation by methylglyoxal results from a Tris buffer artefact. Here, we show that this is not the case, and that DJ-1 and its homologs are the bona fide deglycases awaited since the Maillard discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app