Journal Article
Review
Add like
Add dislike
Add to saved papers

Endocrine disruptors and the tumor microenvironment: A new paradigm in breast cancer biology.

Breast cancer is one of the most frequently diagnosed malignancies in women and is characterized by predominantly estrogen dependent growth. Endocrine disruptors (EDCs) have estrogenic properties which have been shown to increase breast cancer risk. While the direct effects of EDCs on breast cancer cell biology and tumor progression have been well studied, the roles for EDCs on tumor microenvironment composition, signaling and structure are incompletely defined. Estrogen targeting of tumor stromal cells can drive paracrine signaling to breast cancer cells regulating tumorigenesis and progression. Additionally, estrogen and estrogen receptor signaling has been shown to alter breast architecture and extracellular matrix component synthesis. Unsurprisingly, EDCs have been shown to induce structural changes in the mammary gland as well as increased collagen fibers in the tissue stroma. Previous work demonstrates that human mesenchymal stem cells (hMSC) are essential components of the tumor microenvironment and are direct targets of both estrogens and EDCs. Furthermore, estrogen-stem cell cross talk has been implicated in breast cancer progression and results in increased tumor cell proliferation, angiogenesis and invasion. This review aims to dissect the possible relationship and mechanisms between EDCs, the tumor microenvironment, and breast cancer progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app