Add like
Add dislike
Add to saved papers

Physico-chemical profiling of semisynthetic opioids.

Species-specific acid-base and partition equilibrium constants were experimentally determined for the therapeutically important semisynthetic opioid receptor agonist hydromorphone, dihydromorphine, and mixed agonist-antagonist nalorphine and nalbuphine. The acid-base microequilibria were characterized by combining pH-potentiometry and deductive methods using synthesized auxiliary compounds. Independent of the pH, there are approximately 4.8 times as many zwitterionic microspecies than non-charged ones in nalbuphine solutions, while for nalorphine it is the non-charged form that predominates by the same ratio. The non-charged microspecies is the dominant one also in the case of hydromorphone, although its concentration exceeds only 1.3 times that of its zwitterionic protonation isomer. The pH-independent partition coefficients of the individual microspecies were determined by a combination of experimentally measured, pH-dependent, conditional distribution constants and a custom-tailored evaluation method, using highly similar auxiliary compounds. The pH-independent contribution of the zwitterionic microspecies to the distribution constant is 1380, 1070, 3160 and 72,440 times smaller than that of the inherently more lipophilic non-charged one for hydromorphone, dihydromorphine, nalbuphine and nalorphine, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app