Add like
Add dislike
Add to saved papers

A mechanism for evasion of CTL immunity by altered O-glycosylation of HLA class I.

Anti-tumour immunity by cytotoxic T-lymphocytes (CTLs) is essential to suppress tumour progression. Cancer cells that evade CTL immunity proliferate in the host, promoting metastasis, but mechanisms underlying this capacity remain unknown. Here we report that bladder cancer cells metastasized to lymph nodes evade CTL immunity by a new mechanism via altered glycosylation. CTLs normally recognize and kill cancer cells presenting antigenic peptides on human leukocyte antigen (HLA) class I. We show bladder cancer cells expressing the O-glycan processing enzyme, core2 β-1,6-N-acetylglucosaminyltransferase (C2GnT) exhibit HLA class I O-glycan modified with poly-N-acetyllactosamine and are highly susceptible to CTL. In those cells, poly-N-acetyllactosamine on HLA class I O-glycan binds galectin-3 to form a cell-surface molecular lattice, enabling efficient cell-surface retention of HLA class I. In contrast, bladder cancer cells in which C2GnT is downregulated show decreased levels of poly-N-acetyllactosamine on HLA class I O-glycans, attenuating lattice formation and reducing the cell-surface half-life of HLA class I. These tumour cells present antigenic peptides less efficiently, thereby evading CTL lysis and facilitating metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app