JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Novel Mouse Model to Study Image-Guided, Radiation-Induced Intestinal Injury and Preclinical Screening of Radioprotectors.

Cancer Research 2017 Februrary 16
Radiation is an important treatment modality for gastrointestinal tumors, but intestinal injury is a common side effect. Here we describe a physiologically relevant model for studying the molecular determinants of radiation-induced intestinal damage and testing novel radioprotectors. The model employs a radiopaque marker implanted into the surface of the mouse jejunum, serving as a fiducial marker for precise radiation targeting. Mice were imaged with Cone-Beam CT (CBCT) and irradiated (IR) to the marked area using the Small Animal Radiation Research Platform (SARRP). IR-induced damage was acute but reversible and largely restricted to the area of the marker, leaving the surrounding tissues intact. Although whole gut irradiation with these doses caused lethal GI syndrome, focal (5 mm) radiation of the intestine did not cause any weight loss or lethality. However, fibrosis and collagen deposition 4 months post-IR indicated chronic intestinal damage. A separate cohort of mice was treated daily with curcumin, a clinically tested radioprotector, prior to and post-IR. Curcumin-treated mice showed significant decreases in both local and systemic inflammatory cytokine levels and in fibrosis, suggesting it is an effective radioprotector of the intestine. Our results indicate that this model, which emulates clinically relevant intestinal radiation-induced injury, can be used to assess radioprotectors prior to testing in the clinic. Cancer Res; 77(4); 908-17. ©2016 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app