Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules.

Posttranslational modifications of certain stress granule (SG) proteins are closely related to the assembly of SGs, a type of cytoplasmic foci structure. Our previous studies revealed that the Tudor staphylococcal nuclease (Tudor-SN) protein participates in the formation of SGs. However, the functional significance of potential Tudor-SN modifications during stress has not been reported. In this study, we demonstrated that the Tudor-SN protein was phosphorylated at threonine 103 (T103) upon stimulation with arsenite. In addition, c-Jun N-terminal kinase (JNK) was found to be responsible for Tudor-SN phosphorylation at the T103 site. We further illustrated that either a T103A mutation or the suppression of phosphorylation of T103 by the JNK inhibitor SP600125 inhibited the efficient recruitment of Tudor-SN into SGs. In addition, the T103A mutation could affect the physical binding of Tudor-SN with the G3BP (Ras-GAP SH3 domain-binding protein) protein but not with the HuR (Hu antigen R) protein and AGTR1-3'UTR (3'-untranslated region of angiotensin II receptor, type 1) mRNA cargo. These data suggested that JNK-enhanced Tudor-SN phosphorylation promotes the interaction between Tudor-SN and G3BP and facilitates the efficient recruitment of Tudor-SN into SGs under conditions of sodium arsenite-induced oxidative stress. This finding provides novel insights into the physiological function of Tudor-SN modification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app