Add like
Add dislike
Add to saved papers

Experimental and ab initio characterization of HC3N(+) vibronic structure. II. High-resolution VUV PFI-ZEKE spectroscopy.

Vacuum-ultraviolet pulsed-field-ionization zero-kinetic-energy photoelectron spectra of X(+)Π2←XΣ+1 and B(+)Π2←XΣ+1 transitions of the HC3(14)N and HC3(15)N isotopologues of cyanoacetylene have been recorded. The resolution of the photoelectron spectra allowed us to resolve the vibrational structures and the spin-orbit splittings in the cation. Accurate values of the adiabatic ionization potentials of the two isotopologues (EI/hc(HC3(14)N)=93 909(2) cm(-1) and EI/hc(HC3(15)N)=93 912(2) cm(-1)), the vibrational frequencies of the ν2, ν6, and ν7 vibrational modes, and the spin-orbit coupling constant (ASO = -44(2) cm(-1)) of the X(+)Π2 cationic ground state have been derived from the measurements. Using ab initio calculations, the unexpected structure of the B(+)Π2←XΣ+1 transition is tentatively attributed to a conical intersection between the A(+) and B(+) electronic states of the cation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app