Add like
Add dislike
Add to saved papers

Synthesis, in vitro and in vivo evaluation of new hybrids of millepachine and phenstatin as potent tubulin polymerization inhibitors.

In this paper, a series of millepachine derivatives were synthesized and evaluated as tubulin polymerization inhibitors. The optimal compound 5i, (3-hydroxy-4-methoxyphenyl)(5-methoxy-2,2-dimethyl-2H-chromen-8-yl)methanone, displayed the highest cytotoxicity toward a series of cancer cells (ranging from 18 to 45 nM of IC50 ). Further investigation revealed that 5i significantly repressed the multidrug resistant cells (A549/CDDP, A2780/TAX) and had little cytotoxicity towards human normal cells (HLF, BJ). Cellular mechanism studies demonstrated that 5i induced G2/M phase arrest and apoptosis, which was associated with the collapse of the mitochondrial membrane potential (MMP). Additionally, western blot analysis showed that 5i could change the levels of cell cycle-related proteins (e.g. Cyclin B1, Cdc25c, Cdc2) and some apoptosis-related proteins (e.g. Bax, Bad, Bcl-2, Bcl-xl). Finally, 5i effectively inhibited the growth of xenograft tumours of A549 cells in nude mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app