Add like
Add dislike
Add to saved papers

Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: size matters?

Nanoscale 2017 January 20
Copper-containing zeolites exhibit high activity in the direct partial oxidation of methane into methanol at relatively low temperatures. Di- and tricopper species have been proposed as active catalytic sites, with recent experimental evidence also suggesting the possibility of the formation of larger copper oxide species. Using density functional theory based global geometry optimization, we were able to identify a general trend of the copper oxide cluster stability increasing with size. For instance, the identified ground-state structures of tetra- and pentamer copper clusters of Cun On 2+ and Cun On-1 2+ stoichiometries embedded in an 8-ring channel of mordenite exhibit higher relative stability compared to smaller clusters. Moreover, the aluminium content and localization in the zeolite pore influence the cluster's stability and its geometrical motif, which offers a perspective of tuning the properties of copper-exchanged zeolites by creating copper oxide clusters of a given structure and size. With the activity of the cluster towards methane being connected to its stability, such tuning will potentially allow the design of catalysts with engineered properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app