Add like
Add dislike
Add to saved papers

Inorganically coated colloidal quantum dots in polar solvents using a microemulsion-assisted method.

The dielectric nature of organic ligands capping semiconductor colloidal nanocrystals (NCs) makes them incompatible with optoelectronic applications. For this reason, these ligands are regularly substituted through ligand-exchange processes by shorter (even atomic) or inorganic ones. In this work, an alternative path is proposed to obtain inorganically coated NCs. Differently to regular ligand exchange processes, the method reported here produces core-shell NCs and the removal of the original organic shell in a single step. This procedure leads to the formation of connected NCs resembling 1D worm-like networks with improved optical properties and polar solubility, in comparison with the initial CdSe NCs. The nature of the inorganic shell has been elucidated by X-ray Absorption Near Edge Structure (XANES), Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Photoelectron Spectroscopy (XPS). The 1D morphology along with the lack of long insulating organic ligands and the higher solubility in polar media turns these structures very attractive for their further integration into optoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app