Add like
Add dislike
Add to saved papers

Tetramethyl Pyrazine Protects Hippocampal Neurons Against Anoxia/Reoxygenation Injury Through Inhibiting Apoptosis Mediated by JNK/MARK Signal Pathway.

BACKGROUND Tetramethyl pyrazine (TMP) is a typical biologically active alkaloid isolated from the Chinese herb Ligusticum walliichi. It has been reported that TMP shows neuroprotective and stroke injury reductive properties in cerebral ischemia/reperfusion (I/R) animal models. In the present study we sought to investigate the effect and potential intervention mechanism of TMP in anoxia/reoxygenation (A/R) rat hippocampal neurons. MATERIAL AND METHODS After being cultured for 7 days, primary hippocampal neurons were randomly assigned into a normal control group (N), a TMP group (C: 0 ug/ml, L: 60 ug/ml, M: 200ug/ml and H: 800 ug/ml), and a JNK inhibitor group (S: SP600125, 10 μmol/L). A hypoxia/reoxygenation model were prepared 1 h after incubation. Hippocampal neurons were incubated in 90% N2 and 10% CO2 for 2 h, and then reoxygenated for 24 h in an incubator with 5%CO2 at the temperature of 37°C. The apoptosis rate, MKK4 and MKK7 mRNA and JNK kinase protein levels (C-fos, c-jun, and P-JNK) of hippocampal neurons were detected. RESULTS The apoptosis rates of hippocampal neurons induced by A/R showed significant reduction after being pre-treated with JNK inhibitor, TMP 60 µg/ml, 200 µg/ml, and 800 µg/ml. The JNK kinase MKK4mRNA and MKK7mRNA levels, as well as the expressions of C-fos, C-jun, and P-JNK protein levels, were also be reduced. CONCLUSIONS TMP may produce a protective effect in anoxia/reoxygenation-induced primary hippocampal neuronal injury by inhibiting the apoptosis of the hippocampal neurons; the possible mechanism may be inhibition of the JNK signal pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app